Does the application of ground force set the energetic cost of cross-country skiing?

نویسندگان

  • M J Bellizzi
  • K A King
  • S K Cushman
  • P G Weyand
چکیده

We tested whether the rate at which force is applied to the ground sets metabolic rates during classical-style roller skiing in four ways: 1) by increasing speed (from 2.5 to 4.5 m/s) during skiing with arms only, 2) by increasing speed (from 2.5 to 4.5 m/s) during skiing with legs only, 3) by changing stride rate (from 25 to 75 strides/min) at each of three speeds (3.0, 3.5, and 4.0 m/s) during skiing with legs only, and 4) by skiing with arms and legs together at three speeds (2.0-3.2 m/s, 1.5 degrees incline). We determined net metabolic rates from rates of O2 consumption (gross O2 consumption - standing O2 consumption) and rates of force application from the inverse period of pole-ground contact [1/tp(arms)] for the arms and the inverse period of propulsion [1/tp(legs)] for the legs. During arm-and-leg skiing at different speeds, metabolic rates changed in direct proportion to rates of force application, while the net ground force to counteract friction and gravity (F) was constant. Consequently, metabolic rates were described by a simple equation (metab = F . 1/tp . C, where metab is metabolic rates) with cost coefficients (C) of 8.2 and 0.16 J/N for arms and legs, respectively. Metabolic rates predicted from net ground forces and rates of force application during combined arm-and-leg skiing agreed with measured metabolic rates within +/-3. 5%. We conclude that rates of ground force application to support the weight of the body and overcome friction set the energetic cost of skiing and that the rate at which muscles expend metabolic energy during weight-bearing locomotion depends on the time course of their activation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The metabolic cost of force generation.

INTRODUCTION The purpose of this study was to provide support, based on a review of existing data, for a general relationship between metabolic cost and force generated. There are confounding factors that can affect metabolic cost, including muscle contraction type (isometric, eccentric, or concentric), length, and speed as well as fiber type (e.g., fast or slow) and moment arm distances. Despi...

متن کامل

Validation of Moticon’s OpenGo sensor insoles during gait, jumps, balance and cross-country skiing specific imitation movements

The purpose of this study was the experimental validation of the OpenGo sensor insole system compared to PedarX sensor insole and AMTI force-plate systems. Sixteen healthy participants performed trials in walking, running, jumping (drop and counter movement jumps), imitation drills and balance, with simultaneous measures of all three systems. Detected ground contact and flight times with OpenGo...

متن کامل

Biomechanical analysis of double poling in elite cross-country skiers.

PURPOSE To further the understanding of double poling (DP) through biomechanical analysis of upper and lower body movements during DP in cross-country (XC) skiing at racing speed. METHODS Eleven elite XC skiers performed DP at 85% of their maximal DP velocity (V85%) during roller skiing at 1 degrees inclination on a treadmill. Pole and plantar ground reaction forces, joint angles (elbow, hip,...

متن کامل

A musculoskeletal full‐body simulation of cross‐country skiing

This paper presents a measurement-driven, musculoskeletal, full-body simulation model for biomechanical analysis of the double-poling (DP) technique in cross-country skiing. DP is a fast and powerful full-body movement; therefore, it is interesting to examine whether inverse dynamics using static optimization is working for a musculoskeletal full-body model with high accelerations, a large rang...

متن کامل

Factors that Influence the Performance of Elite Sprint Cross-Country Skiers

BACKGROUND Sprint events in cross-country skiing are unique not only with respect to their length (0.8-1.8 km), but also in involving four high-intensity heats of ~3 min in duration, separated by a relatively short recovery period (15-60 min). OBJECTIVE Our aim was to systematically review the scientific literature to identify factors related to the performance of elite sprint cross-country s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of applied physiology

دوره 85 5  شماره 

صفحات  -

تاریخ انتشار 1998